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Abstract- In industrial applications control of unstable process is more difficult than stable process. In addition the 
performance of the controller is restricted for unstable process because of the presence of right half plane poles or zeros in 
comparison with stable process. B.W.Bequette proposed a three state model for a continuous stirred tank reactor taking 
into  account the cooling jacket temperature as a third state variable and which has high influence on the open loop and 
closed loop response. For an open loop unstable process it is suggested to use internal model controller (IMC) in 
conventional feedback form because IMC is internally  unstable. Further  it simplifies the tunning procedure because it 
needs only single tuning parameter. This paper deals with the design of digital IMC for a jacketed chemical reactor  
which is an open loop unstable system due to the effect of scale-up on the steady state and dynamic characteristics.The 
proposed digital controller is  capable of providing system stability and also provides set point tracking and disturbance 
rejection. The controller is designed using the discrete transfer function for various values of filter factor. The simulation 
result shows the feasibility of using the proposed controller for control of the unstable CSTR process.  
 
Index terms: IMC, unstable CSTR, 
 
1.INTRODUCTION: 
Industrial processes namely high purity distillation 
column, highly exothermic chemical reactor, pH 
neutralizer, batch and continuous reactors exhibit 
nonlinear behaviour. These processes may be required 
to operate over a wide range of conditions due to large 
changes in process inputs or set points. The classical 
two-state CSTR model is well-known to be capable of 
giving exotic behaviour. Russo and Bequette (1995) 
noted that, a three-state model (incorporating a jacket 
energy balance) could result in multiple steady-states 
whereas the two-state model exhibits a single steady 
state operating point. It is difficult to design 
conventional PID controller, when there is a 
significant change in process gain and when the 
process is open loop unstable. Temperature control of 
unstable CSTR process is generally crucial and 
complicated due to system nonlinearity.When 
conventional PID controllers are used to control 
highly nonlinear process, the controllers meed to be 
tuned very effectively in order to provide stable 
behaviour over the entire operating range. When there 
is a significant change in process gain and when there 
is open loop instability, the effectiveness of 
conventional PID controller become inadequate. Many 
researchers have developed controllers for SISO 
unstable CSTR process [3] &[5]. The internal model 
controller is the best suited method used to design 
controllers for unstable process. The paper is 
organized as follows: The description of  unstable 
CSTR process is given in section 2. The details about 

design of discrete version of internal model 
controller(IMC) is given in section 3. Digital 
controller design for the unstable CSTR process is 
given in section 4. The simulated results are obtained 
and shown in section 5. The Conclusions of the work 
are drawn in section 6. 
 
2. PROCESS DESCRIPTION 
 
                                   

 
Fig.1. Schematic diagram of Jacketed CSTR process 
 
A continuous stirred tank reactor (CSTR) whose 
schematic is shown in Fig. (1),  is considered where in a 
first order exothermic reaction A B→  takes place at a 
temperature TR  with a cooling jacket. The chemical 
reaction is first order with Arrhenius temperature 
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dependence. In the jacketed CSTR the heat is either 
added or removed to compensate for the temperature 
difference between a cooling jacket fluid and the reactor 
fluid. The ordinary differential equations that model the 
CSTR behavior is given in equation [1]. The component 
material balance on the reactant gives 

( ) ( )
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Where  ‘q’ is the feed flow rate of the reactant, A0C  is 

the feed concentration, AC is the concentration of 

component A in the reactor, 0k is the frequency factor, 

aE is the activation energy, R is the ideal gas constant, 

TR is the reactor temperature in degree Rankine. The 
energy balance in the reactor system is  
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Where ( )- H∆ the heat of reaction, U is is the heat 

transfer coefficient, A is the heat transfer area, 0T  is 

the reactor feed temperature, jT is the jacket 

temperature in degree Rankine. The energy balance in 
the jacket is  
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Where ( )jfq  is the jacket make up flow rate. 

                                                                                                                                  

 

The variables AoC , 0T , q , jfq , jfT are all considered as 

inputs and out of which AoC and 
0T are considered as 

the disturbance variables. The manipulated variable is 
the reactor feed flow rate ( )q and the controlled 

variable is the the reactor temperature. 
The three nonlinear differential equations expressed in 
equations 1.a, 1.b and1.c cannot be solved 
analytically. The approximate model is derived about 
the steady-state operating point of the reactor. 

 The state space representation of the CSTR process in 
terms of deviation variables is given in equation [2]  
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The output state space model is, 
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(2.b) 

The output and input states are defined in the 
deviation variable form as, 

1

2

3

'

'= =

'

A AS

R RS

j j

C Cx

T TxX

T Tx

−  
   −  
   −   

1

2

3
0

4
0

'

'

'

'

jf

A

qu

qu
u

u C
u

T

 
   
   
   = =
   
   
   

 

 

The first two inputs are considered as the manipulated 
variables, while the last two are inputs are considered 
as disturbances.  
The matricies A and B are, 
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Substituting the numerical values given in Table.1 &2, 
the constants in matrix A and B are evaluated and the 
state space model of the system thus obtained is given 
in equation (3). 
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Table1. CSTR variables and parameter values: 
 

Variable Description Value 
V Reactor volume (ft3) 85 

jV  Jacket  volume (ft3) 21.25 

0k  Arrhenius exponential factor (hr -

1) 
16.96 x 
1012 

E Activation energy (Btu / lb mol) 32400 
U Heat transmission coefficient 

(Btu/hr ft2 °F ) 
75 

A Heat transfer surface area (ft2) 88 
R Perfect gas constant (Btu /lb mol 

°R) 
1.987 

( )H−∆  Reaction Heat (Btu / lb mol) 39000 

pCρ  Product density X Thermal 
capacity (Btu/ ft3 °F) 

53.25 
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j pjCρ  Water  density X Water Thermal 
capacity (Btu/ ft3 °F) 

55.6 

 

Table. 2. Reactor steady state parameter values 
 

Variab
le 

Description Value 

AosC  Steady state Feed concentration 
 (lb  mol / ft3) 

0.132 

0sT  Steady state Feed  temperature (°F) 60 

RsT  Steady state Reactor  temperature 
(°F) 

101.1 

jfsT  Steady state cooling water input  
temperature (°F) 

0 

jsT  Steady state jacket  temperature 
(°F) 

80 

AsC  Steady state Reactor  concentration 
(lb  mol / ft3) 

0.066 

sq
 

Steady state Feed flow rate (ft3/hr) 340 

jfsq
 

Steady state cooling water  flow 
rate (ft3/hr) 

24 

The transfer function which relates the
 

Reactor 
temperature (TR) to the cooling water flow rate 

( )jfq of the plant is obtained from state space model 

given in equation (3) and expressed as given in 
equation (4).

 
T (s) 4.753S 38R =

3 2Q (s) S + 9.34S +16.98S 34.2jf

− −

−               

(4)
 

The transfer function indicates that the open loop 
system is unstable due to the presence of unstable pole 
at 1.1687 (RHP pole). 
 
3.CONCEPTS OF IMC FOR UNSTABLE PLANT  
In the chemical engineering field, the internal model 
controller is a popular technique and it is named so 
because the controller has model of the plant as its 
part. The IMC feedback configuration is shown in 
Fig.2.  

 
 
         Fig.2. IMC feedback configuration                                 

 
 Fig.3. Standard control configuration with IMC 
 

The actual transfer function of the plant is denoted as 
1

( )G zp
−

 
and its model by

 

1
( )G z

− . Let the factored 

form of model transfer function be represented as  

1
( )

nm
B B Bk

G z z
A

− +
− −=

g
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Where,   

Bg is the factor of B with the roots inside the unit 

circle and with positive real parts.  

B−  is the factor of B that have roots with negative 
real part and which may lie either inside, outside or on 
the unit circle.  

nmB +  refers to that part of B containing non minimum 
zeros of B with positive real  parts. 
The equivalence of standard control configuration 
with IMC is shown in Fig.3. In this schematic 
diagram, the block shown in dotted line is the 
controller in the conventional form  (GC

) and is 

expressed as, 
( )

1 ( ) ( )

G ZQ
GC G Z G ZQ

=
−

 

Suppose the plant 1( )G z− is
 
containing one unstable 

pole. The internal stability of the system is assured if 
the following conditions are satisfied. 
i) ( )G ZQ

is stable. 

ii) At the unstable poles pi of the plant 1( )G z− , 

( )1 ( ) ( )QG Z G Z− is zero.  

That is,( )1 ( ) ( ) 0
i

Q
p

G Z G Z− =                                (7) 

It is achieved by introducing a parameter β in the 
definition of ( )G ZQ

. 

( )† 1
1( )Q G G zfG Z β −= +                                            (8) 

Where,   

† A
G nm

B B Bg s r
= − +

 

sB −  is the steady state equivalent of factor ofB−
 

nm
rB + is 

nmB +
with reversed coefficients. 
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Substituting the definition of ( )G ZQ
 given in Equation 

(8) into Equation (7), we get 

( )( )† 11-G 1 0
i

f
z p

G G zβ −

=
+ =                                (9) 

Solving equation (9), we obtain 
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 To account for the noise and model-mismatch , a low 
pass filter of the form given below is used. 

( )
1

1

1
f

f
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−
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� , where 1 > α > 0 

The IMC equivalent conventional feedback controller 
is given by, 

( )( ) ( )
( )

1
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B A S zf
G

nm nm kC
R zB A B B B B B z zf s r r β
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− + − + − −
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4.DIGITAL IMC DESIGN 
 
Step1: The discrete version of the continuous time 
transfer function given in Equation (3) is indicated 
by 1G(z )−
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Comparing with equation (6), we find that 
1 2 3A 1 2.91z 2.82z 0.911z− − −= − + −

 

3 10.237 10 1 0.95B z− − = − × − g

 

1B 1 0.96 z− − = +   and  1nmB + =  
30.237 10pk −= − ×

 

Step2: The Q form of IMC is obtained using the 
formula, 

( )1 1
11
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A
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It is evaluated that, 1
nm

Br
+ =  and  1.96Bs

− =

 

The filter factor α is chosen as 0.1 and β is evaluated 
as 0.02 using equation (10). 
 
The S and R polynomials  required for the IMC 
equivalent of conventional feedback controller is 
obtained using equation (11) and given below. 

( ) ( )3 1 2
10 0.54 0.26 0.28R z z z

− − −= + +  

1 2 3 4
( ) 0.9 2.6 2.5 0.77 0.016S z z z z z

− − − −= − + − −  

 
5. SIMULATION RESULTS: 
In order to analyze the performance, the proposed 
internal model controller  shown in Fig.3 is simulated 
using MATLAB. The plant transfer function is 
discretized by using a zero order hold circuit. The 

controller term 
( )
( )

S z

R z
and the plant term 

( )
( )

B z

A z
are 

evaluated for simulation. The performance of internal 
model controller for various values of filter factor 
(alpha) is shown in Fig.4. for step change in reactor 
feed flow rate. It indicates that, as the filter factor 
increases the response exhibits offset. The robustness 
of the proposed controller is studied by applying a 
moving average random noise with the plant during 
simulation. The effectiveness of disturbance rejection 
capability is demonstrated by applying a step 
disturbance of magnitude 30  which begins at 5 hours 
and ends at 7 hours. The servo regulatory response of 
the proposed controller is shown in Fig.5.The 
performance comparison of designed controller is 
given in Table.3. 
 
Table 3: Comparison of time domain Specifications  
 

 
6. CONCLUSION: 
Hence the digital internal model controller algorithm 
is demonstrated for a modeled unstable jacketed 
CSTR process. The performance summary given in 
Table.3 indicates that, the internal model controller 
designed with least value of filter factor offers better 
performance in terms of the time response 
specifications such as settling time, overshoot,peak 
time and rise time compared to higher values. The 
effectives of designed digital internal model controller 
is proved with the simulation results.   
 

 
Parameter 

IMC 
with 
α=0.1 

IMC 
with 
α=0.6 

IMC 
with 
α=0.8  

Peak time  tp in hr 0 0.65 4.4 
Rise time  tr in hr 0 0.04 0.08 

Settling time ts in hr 0.02 0.09 0.21 

% peak overshoot 0 0 0 
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        Fig.4. IMC servo response to set point change in  
        coolant flow rate 
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    Fig.5. IMC Servo Regulatory response to step 
    disturbance of magnitude 30 begins at 5 hours and  
    ends at 7 hours. 
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